Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems?

نویسنده

  • Steffen Kiel
چکیده

The origin and evolution of the faunas inhabiting deep-sea hydrothermal vents and methane seeps have been debated for decades. These faunas rely on a local source of sulfide and other reduced chemicals for nutrition, which spawned the hypothesis that their evolutionary history is independent from that of photosynthesis-based food chains and instead driven by extinction events caused by deep-sea anoxia. Here I use the fossil record of seep molluscs to show that trends in body size, relative abundance and epifaunal/infaunal ratios track current estimates of seawater sulfate concentrations through the last 150 Myr. Furthermore, the two main faunal turnovers during this time interval coincide with major changes in seawater sulfate concentrations. Because sulfide at seeps originates mostly from seawater sulfate, variations in sulfate concentrations should directly affect the base of the food chain of this ecosystem and are thus the likely driver of the observed macroecologic and evolutionary patterns. The results imply that the methane-seep fauna evolved largely independently from developments and mass extinctions affecting the photosynthesis-based biosphere and add to the growing body of evidence that the chemical evolution of the oceans had a major impact on the evolution of marine life.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global dispersion and local diversification of the methane seep microbiome.

Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain...

متن کامل

Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in co...

متن کامل

Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand)

The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotroph...

متن کامل

Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep

BACKGROUND Subsurface fluids from deep-sea hydrocarbon seeps undergo methane- and sulfur-cycling microbial transformations near the sediment surface. Hydrocarbon seep habitats are naturally patchy, with a mosaic of active seep sediments and non-seep sediments. Microbial community shifts and changing activity patterns on small spatial scales from seep to non-seep sediment remain to be examined i...

متن کامل

Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench

The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 282 1804  شماره 

صفحات  -

تاریخ انتشار 2015